The Forcing Edge-to-vertex Detour Number of a Graph
نویسندگان
چکیده
For two vertices u and v in a graph G = (V, E), the detour distance D (u, v) is the length of a longest u – v path in G. A u – v path of length D (u, v) is called a u – v detour. For subsets A and B of V, the detour distance D (A, B) is defined as D (A, B) = min {D (x, y) : x ∈ A, y ∈ B}. A u – v path of length D (A, B) is called an A – B detour joining the sets A, B V where u ∈ A and v ∈ B. A vertex x is said to lie on an A – B detour if x is a vertex of an A – B detour. A set S E is called an edge-to-vertex detour set if every vertex of G is incident with an edge of S or lies on a detour joining a pair of edges of S. The edge-tovertex detour number dn 2 (G) of G is the minimum order of its edge-to-vertex detour sets and any edge-to-vertex detour set of order dn 2 (G) is an edge-to-vertex detour basis of G. A subset T of an edge-to-vertex detour basis S is called a forcing subset for S if S is the minimum forcing subset of S. The forcing edge-to-vertex detour number of S, denoted by fdn 2 (S), is the cardinality of a minimum forcing subset for S. The forcing edge-to-vertex detour number of G, denoted by fdn 2 (G), is fdn 2 (G)= min {fdn 2 (S)}, where the minimum is taken over all edge-to-vertex detour bases S in G. The forcing edge-to-vertex detour numbers of certain standard graphs are obtained. It is shown that for every pair a, b of integers with 0 ≤ a ≤ b and b ≥ 2 there exists a connected graph G with fdn 2 (G) = a and dn 2 (G) = b. AMS SUBJECT CLASSIFICATION: 05C12.
منابع مشابه
Detour Monophonic Graphoidal Covering Number of Corona Product Graph of Some Standard Graphs with the Wheel
A chord of a path $P$ is an edge joining two non-adjacent vertices of $P$. A path $P$ is called a monophonic path if it is a chordless path. A longest $x-y$ monophonic path is called an $x-y$ detour monophonic path. A detour monophonic graphoidal cover of a graph $G$ is a collection $psi_{dm}$ of detour monophonic paths in $G$ such that every vertex of $G$ is an internal vertex of at most on...
متن کاملThe explicit relation among the edge versions of detour index
The vertex version of detour index was defined during the works on connected graph in chemistry. The edge versions of detour index have been introduced ecently. In this paper, the explicit relations among edge versions of detour index have been declared and due to these relations, we compute the edge detour indices for some well-known graphs.
متن کاملGlobal Forcing Number for Maximal Matchings under Graph Operations
Let $S= \{e_1,\,e_2, \ldots,\,e_m\}$ be an ordered subset of edges of a connected graph $G$. The edge $S$-representation of an edge set $M\subseteq E(G)$ with respect to $S$ is the vector $r_e(M|S) = (d_1,\,d_2,\ldots,\,d_m)$, where $d_i=1$ if $e_i\in M$ and $d_i=0$ otherwise, for each $i\in\{1,\ldots , k\}$. We say $S$ is a global forcing set for maximal matchings of $G$ if $...
متن کاملThe connected forcing connected vertex detour number of a graph
For any vertex x in a connected graph G of order p ≥ 2, a set S of vertices of V is an x-detour set of G if each vertex v in G lies on an x-y detour for some element y in S. A connected x-detour set of G is an x-detour set S such that the subgraph G[S] induced by S is connected. The minimum cardinality of a connected x-detour set of G is the connected x-detour number of G and is denoted by cdx(...
متن کاملOn the revised edge-Szeged index of graphs
The revised edge-Szeged index of a connected graph $G$ is defined as Sze*(G)=∑e=uv∊E(G)( (mu(e|G)+(m0(e|G)/2)(mv(e|G)+(m0(e|G)/2) ), where mu(e|G), mv(e|G) and m0(e|G) are, respectively, the number of edges of G lying closer to vertex u than to vertex v, the number of ed...
متن کامل